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Abstract:  

Vehicular Edge Computing (VEC) enables low latency processing of data by deploying 

computational resources at the edge of the network for intelligent transportation systems. VEC 

does have a significant vulnerability to Distributed Denial of Service (DDoS) attacks, which 

often target the Road Side Units (RSUs), as by attacking RSUs this can disrupt vehicular 

communication and various components of the system’s reliability. We propose a scalable DDoS 

detection framework that preserves privacy using Federated Learning and Long Short-Term 

Memory (LSTM) neural networks. The proposed architecture is designed in a layered fashion 

containing three layers, Vehicle, Edge (RSU) and Cloud. RSUs are designed to host lightweight 

sample LSTM models that will classify network traffic in real time. In order to judge the degree 

of the attack we have also defined an attacks degree measurement that aims to quantify irregular 

traffic flows based on network analysis statistics and entropy, which may also allow for tweeting 

filters early on in the DDoS attack life cycle. In order to preserve data privacy and scalability, we 

adopted Federated Learning that allows RSUs to train their own models, while sharing only 

model updates to the central model aggregator, the central model maintains overall distributive 

learning system consistency between all RSUs. We used Python to simulate the system on one-

thousands samples with four-hundred samples of malicious attack. The detection accuracy of the 

system was found to be 92.0% detections accuracy with detection rate was 93.2% with 6.8% 

failures. Compared to other traditional model methodologies like DoSRT, our approach 

demonstrated superior real time performance, scalability and adaptibility in a VEC environment. 
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DDoS Distributed Denial-of-Service 

VEC Vehicular Edge Computing 

VANET Vehicular Ad Hoc Network 

RSU Roadside Unit 

OBU On-Board Unit 

FL Federated Learning 

LSTM Long Short-Term Memory 

ML Machine Learning 

DL Deep Learning 

SDN Software Defined Networking 

SVM Support Vector Machine 

KNN K-Nearest Neighbor 

RBF Radial Basis Function 

KSVN KNN + SVM Hybrid Model 

RL Reinforcement Learning 

T-DDQN Transfer Double Deep Q-Network 

SMOTE Synthetic Minority Over-sampling Technique 

IoV Internet of Vehicles 

ITS Intelligent Transportation System 

IDS Intrusion Detection System 

DoSRT Denial-of-Service Resistant Trust 

FSCB-IDS Feature Selection & Class Balancing IDS 

FedAvg Federated Averaging 

RF Random Forests 
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Introduction 

The rise of intelligent transportation has speed up a revolution in car technology, transforming 

cars from solitary devices to intelligent, data-driven nodes on an expanded network [1]. Enabled 

by state-of-the-art computing, communication technology, and real-time decision platforms, 

Vehicular Edge Computing (VEC) extends the promise of distributed computation to the 

roadside. VEC enables applications such as adaptive cruise control, dynamic traffic routing, 

accident forecasting, and real-time traffic monitoring. VEC processes information at the edge, 

avoiding latency, preserving privacy, and enhancing decision-making [1][2]. 

However, the advent of this inter-connected infrastructure is also coupled with a higher 

vulnerability to cyber attacks[2]. Among the most effective types of such attacks are Distributed 

Denial of Service (DDoS) attacks, which are designed to flood Roadside Units (RSUs) and 

central controllers with false traffic, thus paralyzing vehicular communication and computational 

services. Not only do these attacks reduce the availability and efficacy of vehicular services, but 

they can also result in catastrophic effects to safety-critical applications[3]. 

This thesis tackles the security problem of DDoS attacks in VEC through a Federated Learning-

based approach [3]. It suggests a novel layered defense system integrating localized knowledge 

with LSTM classifiers and global knowledge sharing through Federated Learning. This chapter 

presents the motivation, goal, and conceptual framework of the research, ending by an outline of 

the thesis organization[2]. 

Motivation 

vehicular networks are becoming more heterogeneous and advanced by virtue of integration of 

different paradigms of computation and communication. Although, this increases communication 

and interaction capabilities of the car with infrastructure, like other cars, it also provides new 

paths to cyberattacks. The more VEC shifts computation overhead from the cloud to the edges, 

the more the need arises to protect edge nodes, especially RSUs[4]. 

Traditional DDoS solutions do not work in VEC because they are strongly based on centralized 

processing, fixed rule sets, or signature-based approaches that do not adapt to high-mobility, 
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low-latency networks. Furthermore, forwarding all vehicle information to a central server for 

processing incurs high bandwidth consumption and privacy concerns[5]. 

A more practical solution is in decentralized, real-time detection and mitigation systems that can 

evolve to address new threats and changing network conditions. Federated Learning, with its 

distributed training paradigm and privacy-friendly characteristics, is a natural integration into the 

VEC framework. Lightweight LSTM models at RSUs enable real-time detection of anomalous 

behavior with resource efficiency. These motivations are the foundation of this work[6]. 

Objectives 

The primary goal of this research is to develop a scalable and robust DDoS detection framework 

suitable for VEC environments. The key objectives are outlined below: 

• Design a three-tier hierarchical architecture that supports distributed DDoS detection 

using local edge devices (RSUs). 

• Develop a lightweight LSTM model for real-time traffic classification based on flow-

level features. 

• Introduce an attack degree metric to quickly assess the severity of network anomalies and 

pre-filter suspicious traffic flows. 

• Integrate Federated Learning into the detection framework to aggregate model updates 

without sharing raw data. 

• Evaluate the performance of the proposed framework using real-world datasets in terms 

of detection rate, false alarm rate, latency, and scalability. 

Basic Concepts 

Before we discuss the details of the proposed framework, it is beneficial to recognize the basic 

paradigms, namely cloud computing, fog computing, edge computing, mobile edge computing 

and vehicular ad-hoc networks (VANETs). 
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Cloud Computing 

Cloud Computing is a centralized computing concept that allows users general access to pooled 

computing resources, which includes storage, processing power, and applications, on-demand, 

over the internet[7]. With cloud computing, the user does not have to worry about physical 

hardware or complicated infrastructure - the cloud service is primarily hosted on remote servers 

or infrastructure managed by cloud providers[8]. 

 

Cloud-Computing 

The architecture in Figure 1.1 is a typical cloud computing architecture which shows user 

devices, which may be a mobile device, laptops, enterprise system, etc., interact with cloud 

resources through a virtual environment[9]. These cloud resources are applications, databases, 

servers, and storage systems, which will exist in data centers around the world. These cloud 

networks typically allow for different cloud models such as public cloud, private cloud, and 

hybrid cloud, each level providing a different level of control, flexibility, and scalability for user 

needs[9][7]. 

Cloud computing’s four defining characteristics are: broad network access, resource pooling, 

rapid elasticity or scalable usage, and measured service. Cloud technology enables collaboration, 

integrates and manages data, and can be deployed in dynamic ways as demand grows. These 

characteristics help to allow cloud computing to be a cornerstone to other technologies like big 

data collection and analytics, Internet of Things (IoT) platform usage, and machine learning 

(ML) services[9]. 
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One of the main benefits of cloud computing is its cost-effectiveness when users only pay for 

what they need (use). You also have reliable backup and recovery from disaster, as well as 

availability globally as far as access allows availability and business continuity. 

Fog Computing 

Fog Computing is a decentralized computing design that extends cloud capabilities toward the 

edge of the network by enabling processing, storage, and control functions around the end 

devices [10]. Fog Computing represents an intermediate layer between end-user devices and the 

centralized cloud. It provides benefits for time-sensitive, data-intensive applications through 

faster data processing, reduced latency, and a scalable environment[10]. 

 

Fog computing 

Figure 1.2 shows a typical architecture of a fog computing environment[11]. In this architecture, 

data is produced by local end devices, such as sensors, vehicles, or smart infrastructure, and is 

initially sent to nearby fog nodes rather than through to the original cloud[11][12]. Fog nodes are 

usually found at gateways, routers, or access points, and have computational capabilities to do 

local analytics, local filtering, and even local decision-making[11]. After some local data 

processing, such as filtering or generating summaries, only that which needs further aggregation 

or long-term storage will be sent to the cloud. Fog computing can support multiple applications, 

such as smart cities, autonomous transportation, healthcare monitoring, and industrial 

automation, where immediacy or real-time reaction and local intelligence are important. Fog 
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computing allows for distributed computing workloads across distributed fog nodes - this 

approach lowers latency and improves bandwidth efficiency and fault tolerance. 

Edge Computing 

Edge Computing is a distribution computing model intended to bring processing and storage as 

close as possible to the source of data generation - IoT devices, sensors, vehicles, etc. - and not 

just rely on a central server cloud architecture[13]. Edge Computing is capable of reducing 

latency, bandwidth, and energy by reducing the amount of data transmitted over the network[14]. 

 

Edge Computing 

An example of a typical edge computing architecture is shown in Figure 1.3. In this architecture, 

an edge computer acts as a middle point between the device that the end-user employs and a 

centralized cloud or legacy data center. Edge computers are employed for real-time data 

processing, edge caching, buffering, and machine to machine (device to device) communication. 

By offloading tasks to an edge computer instead of the cloud and localizing computations, edge 

computing allows for faster response time and supports time-sensitive applications[13]. At the 

lowest level are the edge devices: traffic lights, cameras, cell-phones, drones, and connected cars, 

which produce continuous streams of data[15]. The data is either processed directly at the edge 

(on edge servers) or filtered and sent (uphill) only when it is needed. The middle layer consists of 

edge computers, which provide intermediaries that organize network traffic and allow for fast, 

situational decisions[15]. The cloud layer retains an executive role for longer (permanent) 

storage, analytics, and coordination[13]. Edge computing is particularly beneficial for 
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applications that rely on low-latency and high-dependent processing, including automated 

driving, industrial automation, healthcare monitoring, smart grids, etc. Edge computing is 

effectively able to circumvent the disadvantages of cloud computing by alleviating workloads 

from cloud based centralized computing, which increases the chances of potential disconnection 

or cloud loading to occur[13]. 

Mobile Edge Computing 

Mobile Edge Computing (MEC) is a revolutionary computing paradigm that brings computation, 

storage, and control closer to mobile users by deploying resources at the edge of the network - 

but it is more than that. Instead of sending data to and from distant servers using a traditional 

cloud model, MEC provides localized processing as close as possible to the end-user device, 

which results in services delivered with minimal latency, higher-quality services, and allowing 

the bandwidth usage to be optimized[16]. 

 

Mobile-Edge-Computing-Architecture 

Figure 1.4 displays the generalized architecture of a MEC-based system[15]. MEC servers are 

illustrated in between the end user devices and the core network. The configured edge servers 

perform processing tasks offloaded from mobile user devices that include phones, sensors, or 

connected vehicle devices[16]. Providing a computing layer at the "edge" enables MEC to 

decrease processing time by reducing the amount of data that must be forwarded on to the cloud-

based servers. MEC also facilitates the needed performance to allow for delay-sensitive 

applications to run efficiently[3]. MEC is especially useful in real-time analytics use cases like 
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augmented reality, vehicle communication (V2 X), and smart cities. MEC provides content 

caching, context-aware services, and AI-based decision-making at the edge of the network 

regardless of the source of the data. This enables quicker response times and helps alleviate 

congestion in the core network[3]. 

Vehicular Ad-Hoc Networks (VANETs) 

Vehicular Ad Hoc Networks (VANETs) are a unique group of Mobile Ad Hoc Networks 

(MANETs), which enable dynamic wireless communications between vehicles and between 

vehicles and infrastructure. VANET enables data exchange in real-time, improving road safety, 

traffic efficiency, and intelligent transportation services (ITS) without a reliance on fixed 

networks[17]. 

 

Vehicular Ad Hoc Networks 

Figure 1.5 displays a typical VANET communication scenario that involves two main modes of 

communication. Vehicle-to-Vehicle (V2V) communication occurs when nearby vehicles share 

data directly with each other to inform each other with respect to traffic hazard warnings, sudden 

braking, and lane changes[18]. 
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Vehicle-to-Infrastructure (V2I) communication occurs when vehicles communicate with fixed 

infrastructure components in the network. For example, vehicles communicate with Road Side 

Units (RSUs), traffic signals, or traffic management centers, where vehicles may obtain more 

generalized information such as traffic information, speed limit information, or emergency 

warnings from traffic management centers[18]. 

These types of networks can be used for many applications, such as collision avoidance, 

cooperative driving, route optimization and in-vehicle infotainment; however, VANETs also 

have significant challenges with mobility management, scalability, latency and hazards arising 

from security threats, and for that reason, we need solid adaptive protocols[19]. 

Vehicular Edge Computing  

Vehicular Edge Computing (VEC) is a cutting-edge form of distributed computing that brings 

together mobile edge computing (MEC) capabilities with vehicular networks, allowing for real-

time data processing and intelligent decision making[20]. VEC increases the capabilities and 

responsiveness of intelligent transportation systems (ITS) as processing and storage resources are 

made available to vehicular users as close to the source of the data that needs to be processed or 

stored. VEC ensures that this is achieved primarily at edge nodes such as Road Side Units 

(RSUs)[19]. 

The architecture shown in Figure 1.6 depicts a typical architecture of a VEC system operating in 

a vehicle edge cloud environment[21]. Vehicles with On-Board Units (OBUs) will wirelessly 

communicate with RSUs in the vicinity using vehicular wireless communications standards such 

as Dedicated Short Range Communications (DSRC) or Cellular Vehicle-to-Everything (C-V2X). 

Each RSU is co-located with a MEC server which provides localized computing and storage. 

The edge nodes are inter-connected with the cloud using high-speed optical fiber lines that 

enable large amounts of data to be aggregated, policy updates to be made, and long-term 

analytics to be performed. 
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Architecture of VEC 

In this design, the data produced by vehicles (position, speed, sensor feeds, and infotainment 

usage) are processed in near real-time, at the edge. Only key insights or long-term records are 

sent to cloud, reducing communication delays and congesting the core network. The cloud is 

responsible for centralized processing like global model training, orchestration of the system, and 

coordination between RSUs. 

This structure offers a hierarchy of vehicles, RSUs (in the case with MEC servers) and cloud 

servers, and can provide a robust and flexible scalable architecture for latency-sensitive vehicular 

applications, whether for collision-avoidance, traffic predictions, autonomous driving, or 

emergency alerts. VEC allows for high-throughput, low-latency communication as well as 

intelligent decisions from the edge, thereby supporting effective safety solutions, efficiency in 

functions like routing, and real-time action in a dynamic transportation environment. 

Features of Vehicular Edge Computing 

VEC blends the benefits of VANETs and edge computing to create a powerful platform for real-

time, distributed intelligence in traffic networks. Key features include: 

• Low Latency: VEC enables microsecond-level responsiveness essential for autonomous 

vehicle control and accident prevention[22]. 

http://www.shodhpatra.org/


ShodhPatra: International Journal of Science and Humanities 
E-ISSN: 3048-6041 | Volume- 2, Issue- 5 | May 2025 

SPIJSH       www.shodhpatra.org        68  

• Context Awareness: RSUs can interpret localized traffic and environmental conditions, 

providing services tailored to specific locations. 

• Resource Efficiency: Offloading heavy computation from vehicles to RSUs ensures 

better battery management and sensor efficiency[15]. 

• Data Privacy: As most processing is done locally, VEC minimizes unnecessary data 

transfer, preserving user confidentiality. 

• Resilience: Decentralization and multi-point coordination improve the robustness of ITS 

against both system faults and cyberattacks. 

Challenges of VEC 

VANETs and VEC systems face major challenges in practice. The high mobility of vehicles 

providing a fast changing network topology and intermittent communication. Unreliable devices 

that have limited resources such as RSUs (road side units) and OBUs (on-board units) because of 

their limited computational models require more efficient and lightweight alternatives. As 

another example, if density of vehicles increases and the demand for services (based on the 

increasing density) is increased accordingly, the deployments must efficiently scale in terms of 

model, latency and ultimately reliability. Simultaneously, the vehicular communication 

(wireless) is susceptible to security problems with a broadcast nature e.g., denial of service 

attacks (DDoS) or other spoofing attacks[23] These issues raise serious questions regarding 

reliability based on their ability to provide real-time responses, secure data integrity and assure 

safety against threats in a mobile dynamic environment. Due to these issues, they point to the 

need for adaptive, distributed and effective detection models for emerging vehicular 

technologies[23]. 

Thesis Organization 

The remainder of this thesis is structured as follows: 

Chapter 2 provides a comprehensive literature review of existing methods and frameworks for 

DDoS detection in vehicular and edge computing environments. This includes traditional 

security models, machine learning-based intrusion detection systems, and recent advancements 
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in federated learning techniques. The review highlights key limitations in scalability, real-time 

responsiveness, and privacy preservation, which form the motivation for the proposed work. 

Chapter 3 presents the detailed system model and problem formulation. It introduces the 

hierarchical architecture of the proposed solution, comprising the vehicle layer, edge (RSU) 

layer, and cloud layer. This chapter also discusses the communication model, threat model, and 

the mathematical formulation of the detection objective, focusing on scalability and dynamic 

adaptation. 

Chapter 4 describes the proposed framework and methodology. It outlines the use of LSTM 

neural networks for traffic classification at the RSU level, the attack degree calculation for pre-

filtering, and the federated learning protocol for collaborative model training. The chapter also 

includes flowcharts and algorithms representing the layer-wise detection and update processes. 

Chapter 5 details the results and performance analysis. It covers the simulation environment, 

dataset, metrics used, and experimental findings. Evaluation is based on detection accuracy, 

failure rate, delay, and throughput. A comparative analysis is included to benchmark the 

proposed model against DoSRT and similar methods. Chapter 6 concludes the thesis by 

summarizing the contributions and discussing future research directions, including real-time 

implementation and enhancements such as hybrid learning approaches. 

Literature Review  

In Xiao et.al.[24] address the challenge of detecting and mitigating low-rate distributed denial-

of-service (LR-DDoS) attacks within vehicular edge computing networks. Given that edge 

nodes, particularly roadside units (RSUs), are susceptible to such stealthy attacks due to their 

exposure to external environments, the authors propose a detection and defense mechanism 

grounded in information metrics. Their approach involves sampling incoming traffic at edge 

nodes and computing real-time information metrics, which are then compared against predefined 

thresholds to identify potential attack traffic. To ensure continuity of services for legitimate 

users, a defense algorithm is introduced to detect conflicting Mobile Subscriber ISDN Numbers 

(MSISDNs), thereby preventing service disruption to normal vehicles. The proposed method 

emphasizes cooperative defense among multiple edge nodes to enhance detection accuracy while 
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minimizing resource consumption. Experimental evaluations demonstrate the effectiveness of 

this scheme in identifying LR-DDoS attacks and maintaining network service quality[24]. 

In Yao et.al.[25] present a viable Software-Defined Networking (SDN) network-based detection 

and response system for Distributed Denial-of-Service (DDoS) attacks in vehicular networks. 

Despite the known limitations of SDN network centralized control, the authors design a system 

that takes advantage of SDN controllers’ global view of the network to monitor traffic and detect 

variations in traffic patterns that suggest DDoS attacks. Additionally, the platform to enhanced 

security has a fast reaction time that built-in a way to change flow rules to respond to protect 

against detected performance DDoS attacks which allow the vehicular network to retain 

performance or reliability[25]. Results indicate that the platform can successfully detect attacks 

and has the ability to mitigate DDoS attacks quickly, as a secure advanced approach to 

enhancing vehicular network security[25]. 

In Adhikary et.al.[26] present a hybrid detection methodology aimed at recognizing Distributed 

Denial-of-Service (DDoS) attacks within Vehicular Ad Hoc Networks (VANETs). This 

methodology integrates two Support Vector Machine (SVM) kernel techniques: AnovaDot and 

Radial Basis Function (RBF) Dot, with the objective of improving detection precision by 

capitalizing on the advantages presented by both kernels. Essential characteristics such as packet 

collisions, packet losses, and jitter are employed to replicate real-time network conditions that 

encompass both standard and attack scenarios. The hybrid model undergoes training and testing 

utilizing these characteristics, and its efficacy is assessed against standalone SVM kernel models 

based on metrics including Accuracy, Gini coefficient, Kolmogorov-Smirnov (KS) statistic, 

Mean Error Rate (MER), and H-measure. Empirical findings reveal that the hybrid methodology 

surpasses the individual kernel models across all assessment metrics, signifying its heightened 

proficiency in detecting DDoS attacks within VANET settings. The analysis shows that utilizing 

various SVM kernels can markedly enhance the efficacy of intrusion detection systems powered 

by machine learning in vehicular networks[26]. 

The work of Kadam et.al [27] showcases a pioneering hybrid machine learning framework, 

dubbed the Hybrid K-Nearest Neighbor and Support Vector Machine (KSVN) algorithm, aimed 

at pinpointing Distributed Denial-of-Service (DDoS) incidents in Vehicular Ad Hoc Networks 

(VANETs). By understanding the specific hurdles that come with VANETs, like quick mobility 
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and varying network arrangements, the authors merge the benefits of K-Nearest Neighbor 

(KNN) and Support Vector Machine (SVM) classifiers to boost detection accuracy. The KSVN 

algorithm is subjected to training and evaluation utilizing a dataset obtained from Kaggle, 

concentrating on features such as protocol types, source and destination IP addresses, and port 

numbers. Empirical assessments reveal that the KSVN algorithm surpasses individual machine 

learning models, including independent KNN and SVM classifiers, regarding accuracy, 

sensitivity, precision, recall, and error rates. The study concludes that this hybrid methodology 

offers a more robust framework for detecting DDoS attacks in VANET settings[27]. 

Karthikeyan et.al.[28] present a real-time detection method for Distributed Denial-of-Service 

(DDoS) flooding attacks in Intelligent Transportation Systems (ITS). Recognizing the critical 

need for prompt and accurate detection mechanisms in ITS, the authors employ reinforcement 

learning techniques to develop a model that can identify DDoS attacks effectively. The proposed 

method leverages the adaptive capabilities of reinforcement learning to monitor network traffic 

patterns and detect anomalies indicative of DDoS flooding attacks. Experimental evaluations 

demonstrate that the model achieves high detection accuracy and low false-positive rates, 

highlighting its efficacy in enhancing the security and reliability of ITS infrastructures. This 

study underscores the potential of integrating advanced machine learning approaches, such as 

reinforcement learning, into real-time security frameworks for vehicular networks[28]. 

The Lei et.al. [29] introduce a security design anchored in blockchain technology to confront the 

challenges of key management, cache poisoning, and privacy-preserving access control within 

vehicular edge computing (VEC) environments utilizing Named Data Networking (NDN). 

Acknowledging the vulnerabilities that are characteristic of NDN-based VEC frameworks, the 

authors devise and execute a sophisticated blockchain system that utilizes an efficient, 

lightweight yet resilient delegate consensus algorithm. This system enables decentralized key 

management, alleviates the risks associated with cache poisoning attacks, and enforces privacy-

centric access control strategies. Comprehensive experimental evaluations substantiate the 

architecture’s efficacy in bolstering security protocols without detracting from network 

performance. The findings suggest that the incorporation of blockchain technology within NDN-

based VEC networks represents a viable approach to addressing existing security and privacy 

challenges[29]. 
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According to Grover et.al.[30], a fortified multitier networking structure for the Internet of 

Vehicles (IoV) is introduced, merging edge computing with deep learning methods to strengthen 

security and enhance operational efficiency. This framework is specifically crafted to tackle the 

complexities associated with real-time data processing and threat identification within vehicular 

networks. By utilizing edge computing, the system facilitates data processing in proximity to the 

data source, thereby diminishing latency and enhancing response times. Furthermore, deep 

learning algorithms are utilized to scrutinize traffic patterns and identify anomalies that may 

signify potential security threats. The multitier architecture guarantees both scalability and 

resilience, adapting to the ever-evolving conditions of vehicular environments. Empirical 

assessments validate the framework’s efficacy in swiftly identifying and addressing security 

threats, consequently improving the overall safety and dependability of IoV systems[30]. 

The work by Haydari et.al. [31] outlines a centralized framework centered around RSUs for 

online intrusion detection and mitigation, specifically developed for Vehicular Ad Hoc Networks 

(VANETs), with a strong focus on countering false data injection (FDI) and discreet Distributed 

Denial-of-Service (DDoS) threats. The authors[31] propose a semi-supervised, non-parametric, 

and sequential anomaly detection algorithm that functions in real-time, facilitating the swift 

identification of anomalous behaviors without the necessity of predefined attack signatures. Each 

Roadside Unit (RSU) autonomously scrutinizes incoming data streams from vehicles within its 

communicative vicinity, utilizing statistical techniques to uncover deviations suggestive of 

malicious intent. Upon detection, the system swiftly addresses threats by isolating compromised 

nodes and transmitting alerts to adjacent RSUs and vehicles. The effectiveness of the framework 

is corroborated through simulations and empirical traffic datasets, showcasing enhanced 

detection accuracy and diminished false alarm rates in comparison to existing methodologies. 

This research highlights the promise of RSU-focused, machine learning-based strategies in 

bolstering the resilience of VANET infrastructures against intricate cyber threats[31]. 

In the Keshari et.al [32] propose DoSRT, a Denial-of-Service Resistant Trust model tailored for 

Vehicular Ad Hoc Networks (VANETs), addressing the limitations of centralized and 

decentralized trust management systems. Recognizing the inefficiencies of centralized 

approaches and the overheads associated with frequent cluster changes in decentralized methods, 

the Keshari et.al [32] introduce a cluster-based framework that leverages speed deviation-based 
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clustering to enhance stability. Trust evaluation within DoSRT is bifurcated into direct trust, 

assessed based on the frequency of beacon messages received from neighboring vehicles, and 

indirect trust, derived from recommendations provided by other vehicles. These trust metrics are 

aggregated to identify and isolate malicious nodes effectively. Simulation results demonstrate 

that DoSRT outperforms existing models, such as the one proposed by Hasrouny et al., achieving 

improvements of approximately 20% in accuracy, 19% in precision, 16% in recall, and 17% in 

F-score, even in scenarios with up to 30% malicious vehicles. The study concludes that DoSRT 

offers a robust solution for enhancing trust management and mitigating DoS attacks in dynamic 

VANET environments[32]. 

Through their examination, Li et.al. [33] disclose a structure employing a Transfer Double Deep 

Q-Network (T-DDQN) aimed at uncovering Distributed Denial-of-Service (DDoS) incidents in 

the Internet of Vehicles (IoV). Acknowledging the complexities introduced by the ever-changing 

dynamics of IoV settings and the limitations associated with the availability of labeled datasets, 

the authors amalgamate transfer learning with a Double Deep Q-Network architecture to bolster 

detection effectiveness. The framework exploits the similarities in traffic flows between 

neighboring base stations to support the transfer of knowledge, thereby enabling recently 

integrated base stations to swiftly adopt efficient DDoS detection strategies. Moreover, a Kalman 

filter is employed to enhance the reinforcement learning mechanism, thereby augmenting the 

model’s responsiveness to varying network conditions. Experimental assessments indicate that 

the proposed approach yields notable advancements in detection efficacy, demonstrating an 

average enhancement of 17.5% in accuracy and 79.4% in the F1-measure relative to 

conventional machine learning techniques. In addition, the transfer learning methodology 

significantly curtails training time and convergence period by 41.3% and 31.1%, respectively, 

underscoring the approach’s effectiveness in the rapidly evolving IoV context[33]. 

The Anyanwu et.al. [34] introduce an advanced Radial Basis Function Support Vector Machine 

(RBF-SVM) methodology for the identification of Distributed Denial-of-Service (DDoS) attacks 

within Software-Defined Networking (SDN)-based Vehicular Ad Hoc Networks (VANETs). 

Acknowledging the paramount importance of hyperparameter optimization in augmenting model 

efficacy, the authors implement a grid search algorithm to meticulously refine the parameters of 

the RBF-SVM, with the objective of enhancing detection precision and minimizing false positive 
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occurrences. The refined model undergoes training and evaluation utilizing standard benchmark 

datasets, exhibiting enhanced performance in comparison to conventional machine learning 

classifiers. Empirical findings suggest that the proposed approach attains elevated detection rates 

alongside diminished false alarm rates, thereby underscoring its effectiveness in recognizing 

DDoS attacks in SDN-supported VANET contexts. The research concludes that the 

amalgamation of grid search optimization with RBF-SVM substantially bolsters the reliability 

and resilience of intrusion detection systems within vehicular network frameworks[34]. The 

following table 2.6 presents a comparative summary of existing DDoS detection models in 

vehicular networks 

Summary Comparison of Existing work in Vehicular Network 

 Scenario  Mitigation Strategies Scalability 

[24

] 
VEC RSU 

Summary Comparison of Existing work in 

Vehicular Network 

Information metrics 

-based detection 
 

Moderate 

[26

] 
VANET Vehicles 

Summary Comparison of Existing work in Vehicular 

Network 

Hybrid SVM 

(AnovaDot & 

RBF) 
 

Moderate 

[27

] 
VANET 

Vehicles,

RSU 

Summary Comparison of Existing work in Vehicular 

Network 

Hybrid 

KNN 

and SVM 
 

Moderate 

[30

] 
IoV 

RSU,clo

ud 

Summary Comparison of Existing work in Vehicular 

Network 

Edge computing 

Moderate 
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 Scenario  Mitigation Strategies Scalability 

with deep learning 
 

[31

] 
VANET RSU Semi-supervised anomaly detection Moderate 

[32

] 
IoV 

RSU,Clo

ud 

Summary Comparison of Existing work in Vehicular 

Network 

Denial-of-Service 

Resistant Trust model 

(DoSRT) 
 

Low 

[33

] 
IoV RSU TDDQN Moderate 

[34

] 
VANET RSU RBF-SVM Moderate 

System Model and Problem Formulation 

This chapter seeks to offer an extensive and carefully articulated discussion on the system model 

along with the nuanced problem formulation that manifests in the context of a Vehicular Edge 

Computing (VEC) scenario, especially when confronted with Distributed Denial of Service 

(DDoS) attacks, which significantly challenge network reliability and performance.[4] It 

meticulously delineates the hierarchical architecture that underpins the system, elaborates on the 

diverse communication protocols that facilitate interaction among components, elucidates 

various attack strategies that adversaries may deploy, and presents the mathematical modeling 

techniques that are employed to detect and effectively mitigate these threats in a timely 

manner[4]. This formulation distinctly underscores the critical importance of real-time 

responsiveness as a fundamental necessity, resource efficiency as a vital consideration, 

scalability to ensure the system can accommodate growth, and adaptability to cope with the ever-

changing dynamics of network environments that characterize modern technological 

landscapes[4]. 
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System Architecture 

The suggested system architecture encompasses various tiers, specifically the vehicle tier, edge 

tier, and cloud/control tier, each possessing unique functions and obligations, thereby promoting 

effective detection, prompt response, and harmonious coordination throughout the network 

components.An overview of the system architecture is presented in Figure 3.1 below. 

 

System architecture 

Vehicle Layer 

Vehicles are fundamental and vital elements in the extensive design of the Vehicle-to-Everything 

(VEC) infrastructure, celebrated for the amalgamation of sophisticated On-Board Units (OBUs) 

that are adept at capturing and deciphering real-time data from assorted sensors, like high-

resolution cameras, Light Detection and Ranging (LiDAR) instruments, radar solutions, and 

Global Positioning System (GPS) tools[35]. The data that is meticulously collected by these 

advanced systems encompasses a wide array of information, reflecting not only the current 

traffic conditions and vehicle dynamics but also various environmental parameters that could 
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influence vehicular performance and safety[29]. Furthermore, these transportation units engage 

in uninterrupted dialogue with proximate Roadside Units (RSUs) through dedicated short-range 

communications (DSRC) protocols, along with cellular vehicle-to-everything (C-V2X) 

standards, which aid in smooth information flow and improve situational awareness as events 

unfold. In scenarios characterized by malicious intent, compromised vehicles may unfortunately 

transform into vectors for Distributed Denial-of-Service (DDoS) attacks, inundating the RSUs 

with illegitimate and excessive communication requests, which can severely undermine the 

overall functionality of the network and jeopardize safety-critical services that rely on timely and 

accurate data The consequences stemming from these assaults are extensive, impacting not only 

the operational performance of the vehicular network but also introducing considerable dangers 

to the safety and security of individual road users as well as the wider transportation 

framework[36]. Hence, it becomes necessary that thorough security measures and guidelines are 

enacted to guard against any prospective weaknesses that may emerge from these malicious 

endeavors, guaranteeing the integrity and consistency of the VEC network as a unified whole. 

Edge Layer 

The Edge Layer, fundamentally composed of Road Side Units (RSUs), functions as the 

computational foundation of the Vehicle Edge Computing (VEC) network[29]. RSUs are 

systematically placed along transportation corridors, undertaking essential functions including 

localized data acquisition, preprocessing, anomaly identification, and initial threat 

alleviation.Each RSU hosts several integrated modules: 

• Data Collection Module: Aggregates communication packets and signals from vehicles. 

• Feature Extraction Module: Analyzes traffic data to compute parameters like packet 

arrival rates, packet sizes, flow durations, inter-arrival times, and entropy levels. 

• Attack Degree Evaluator: Computes an attack degree score 𝐷 to estimate the likelihood 

and intensity of an ongoing DDoS attack: 

𝐷 = 𝛼 ⋅ Δ𝐿𝑓 + 𝛽 ⋅ Δ𝑇𝑓 + 𝛾 ⋅ Δ𝐻 

• LSTM Detection Engine: Employs a lightweight LSTM model to classify traffic based 

on temporal patterns. 
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• Local Mitigation Module: Blocks or rate-limits detected malicious flows. 

• Federated Learning Client: Sends model updates to the cloud server for global 

aggregation. 

Cloud/Control Layer 

The Cloud/Control Layer encompasses a sophisticated infrastructure comprising central cloud 

servers, which serve as pivotal nodes in this digital ecosystem, in conjunction with Software-

Defined Networking (SDN) controllers that meticulously orchestrate the processes of learning 

and the implementation of mitigation strategies across the entirety of the network, thereby 

ensuring a seamless and efficient operational framework[37]. It receives model updates from 

RSUs and applies Federated Averaging to form an updated global model: 

𝑤𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡+1)

=
1

𝐾
∑𝑛𝑘

𝐾

𝑘=1

𝑤𝑘
(𝑡)

 

where 𝑤𝑘
(𝑡)

 are local model parameters, and 𝑛𝑘 is the number of training samples at RSU 𝑘. The 

cloud also broadcasts updated policies and model weights back to RSUs for continual learning. 

Communication Model 

In the context of the VEC framework, the intricately devised communication model is 

meticulously engineered to facilitate not only high-speed data transfer but also to ensure the 

provision of low-latency communication, while simultaneously offering a robust and resilient 

mechanism for seamless data exchange between the various operational layers involved in the 

system architecture. Vehicles employ both DSRC and C-V2X protocols for communication with 

infrastructure. These channels are naturally dynamic because of the movement of vehicles, which 

results in sporadic connectivity and fluctuating signal quality. RSUs act as stationary 

infrastructure nodes that manage the aggregation and preprocessing of V2I traffic. The capacity 

of the wireless channel between a vehicle 𝑣 and RSU 𝑟 at time 𝑡 is modeled using the Shannon–

Hartley theorem: 

𝐶𝑣,𝑟(𝑡) = 𝐵𝑣,𝑟(𝑡)log2 (1 +
𝑃𝑣(𝑡)𝐺𝑣,𝑟(𝑡)

𝑁0 + 𝐼𝑣,𝑟(𝑡)
) 
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where 𝐵𝑣,𝑟(𝑡) is the bandwidth, 𝑃𝑣(𝑡) is the transmission power, 𝐺𝑣,𝑟(𝑡) is the channel gain, 𝑁0 

is the noise power, and 𝐼𝑣,𝑟(𝑡) is the interference[38]. 

RSU’s and cloud communication is supported by high-bandwidth wired or wireless backhaul 

networks, which enables reliable and timely transmission of model updates and policy 

synchronizations. Solutions for fault redundancy and tolerance are in place for momentary 

disconnections or delays.Additionally, asynchronous communication is supported during 

Federated Learning cycles to ensure that local updates from RSUs can be uploaded based on 

local availability, reducing synchronization bottlenecks. 

Attack Model 

The recognized threat schema identifies harmful players, inspired by malicious motives, who 

seek to compromise either the internal components of the vehicle or the external devices attached 

to the vehicular network. In this case the hackers are simply attempting to stand up a DDoS 

attack, which will severely interfere with typical operations. After successfully compromising 

the internal components or external devices, the hackers can generate a significant volume of 

malicious requests to the Roadside Units (RSUs), with the intent of overwhelming both their 

computing ability and exhaust their available bandwidth. In doing so, the RSUs would be unable 

to sufficiently afford any services, and undermine their utility. Not only do they intend on 

undermining the functionality of the RSUs, but also likely compromise the entirety of the 

vehicular communication scheme, potentially impacting transportation networks if the integrity 

of communication is compromised[23]. The attack model adopted in this study is depicted in 

Figure 3.2 below. 
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Attack model 

In practical applications and realistic situations, malicious actors may employ sophisticated 

networks of compromised devices, commonly referred to as botnets, or initiate meticulously 

orchestrated assaults from various locations that are widely spread across the globe, thereby 

complicating defenses significantly. The primary aim of such nefarious endeavors is to inundate 

and exceed the processing capabilities of the Road Side Unit (RSU), leading to substantial 

disruptions in standard communication protocols, ultimately hindering the ability of legitimate 

vehicles to receive necessary services and assistance.Malicious activities are delineated by 

irregular surges in packet transmission, diminished entropy in the relationships between source 

and destination, and heightened burstiness within traffic patterns.The RSU detects such behavior 

by calculating the attack degree 𝐷, defined as: 

𝐷 = 𝛼 ⋅ Δ𝐿𝑓 + 𝛽 ⋅ Δ𝑇𝑓 + 𝛾 ⋅ Δ𝐻 

where Δ𝐿𝑓, Δ𝑇𝑓, and Δ𝐻 represent deviations in flow length, flow duration, and entropy from 

normal baselines. If 𝐷 > 𝑇𝐷, the RSU flags the flow as malicious and activates mitigation 

protocols.In this way, we ensure that RSUs possess the capability of dealing with DDoS attacks, 

which could be sudden or slow-growing, by means of a scalable, automatic, and context-aware 

approach on both the layering and quantifying alternatives. 
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Problem Formulation 

Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} be the feature vectors and 𝑦 ∈ {0,1} be the traffic label (0 = normal, 1 = 

attack). Let 𝑓(⋅) be the detection function using the LSTM model. 

The objective is: 

maximize
𝑓,𝑇

Detection Accuracy(𝑓(𝑋), 𝑦)

subject to𝐿 ≤ 𝐿max

𝑅 ≥ 𝑅min

𝐷 ≤ 𝑇𝐷
Model remains scalable with growing 𝑁

 

Where 𝐿 is detection latency, 𝑅 is RSU resource usage, and 𝑁 is the number of vehicles. The 

model must optimize for performance while staying within practical system limits. 

Proposed Framework and Methodology 

In this chapter, we strive to offer a broad and meticulous clarification of the proposed structure 

and techniques that are explicitly crafted for the detection and reduction of Distributed Denial of 

Service (DDoS) attacks within the framework of Vehicular Edge Computing (VEC) contexts, 

which are gaining more importance in the sphere of modern technological advancements. Given 

the fundamentally fluctuating and always transforming aspects of vehicular networks, it is vital 

that the system possesses qualities of adjustability, scalability, and the proficiency to implement 

real-time decision-making procedures to preserve service availability and ensure safe 

communication among interconnected vehicles. The approach being discussed in this text 

emphasizes a complex, multi-tiered structure that effectively combines cutting-edge methods 

from Machine Learning (ML), particularly focusing on Long Short-Term Memory (LSTM) 

architectures, alongside Federated Learning (FL), thus enabling a decentralized, privacy-

conscious, and cooperative strategy for identifying threats in this important field. 

Framework Overview 

The proposed framework functions within a hierarchical structure comprising three distinct tiers: 

the vehicular tier, the edge tier, and the cloud or control tier. Each tier executes specific functions 
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crucial for identifying and addressing cyber threats whilst ensuring the scalability of the system 

and reducing response latency. The vehicular tier consists of individual vehicles that generate 

and relay real-time data to adjacent Road Side Units (RSUs)[37]. The RSUs constitute the edge 

tier and are tasked with the local collection, preprocessing, and analysis of data utilizing 

streamlined machine learning models. The cloud tier is responsible for global data aggregation 

and coordination activities, particularly in updating shared detection models via Federated 

Learning without compromising sensitive vehicle information[37].The system architecture of the 

proposed model is illustrated in the figure 4.1 below. 

 

Our proposed Federated learning with LSTM model 

Vehicles are installed with On-Board Units (OBUs), which keep on communicating with the 

RSUs in real-time via Vehicle-to-Infrastructure (V2I) protocols like DSRC or C-V2X. The 

OBUs create enormous amounts of real-time traffic data that consist of timestamps, flow 

metadata, packet sizes, and direction. Under normal conditions, this data supports traffic 

optimization and safety-related applications. But under compromised situations, the same OBUs 

can serve as agents for orchestrating collective DDoS attacks on RSUs[39]. This calls for a 
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strong middle layer—the RSU—that has the capability to observe incoming traffic and take 

preemptive action before cloud-based coordination[35]. 

Methodology  

Data Collection and Preprocessing 

The initial phase of the framework involves the methodical acquisition of traffic data by 

Roadside Units (RSUs) from vehicles within their operational communication range[40].This 

unrefined data encompasses a wide array of attributes, including packet inter-arrival intervals, 

source and destination identifiers, packet sizes, and communication frequencies. As raw data 

frequently encounters various interferences, redundancies, and gaps, it is essential to conduct 

preprocessing to obtain relevant information. In the preprocessing stage, the RSU employs 

temporal sampling methodologies to standardize packet timestamps and address any gaps in the 

data. Additionally, redundant or anomalous data points that may distort detection precision are 

eliminated through the application of statistical normalization techniques[41]. 

Subsequent to normalization, statistical characteristics are derived over brief, sliding temporal 

windows to identify transient anomalies. These characteristics encompass metrics such as 

average packet size, standard deviation of inter-arrival times, flow burstiness, and the entropy of 

source addresses. Utilizing entropy as a defining element is vital for recognizing DDoS attacks, 

since it yields important perspectives on the randomness or uniformity present in the 

arrangements of source and destination addresses. A sudden decrease in entropy, for instance, 

may signal an attack orchestrated by a botnet utilizing a limited set of sources. The features that 

are extracted are organized as sequences, thereby facilitating their integration into time-series 

classifiers, including LSTM networks[41]. 

Attack Degree Metric Computation 

After preprocessing, RSUs must quickly identify whether incoming flows show signs of 

anomalous behavior. To facilitate early-stage detection, the system includes a heuristic metric 

called the Attack Degree 𝐷, which combines deviations in key flow characteristics from their 

normal operating baselines. The attack degree is defined as a weighted sum of three critical 

features: deviation in flow length, deviation in flow duration, and deviation in entropy. 
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𝐷 = 𝛼 ⋅ Δ𝐿𝑓 + 𝛽 ⋅ Δ𝑇𝑓 + 𝛾 ⋅ Δ𝐻 

Here, Δ𝐿𝑓 represents the change in flow length, Δ𝑇𝑓 represents change in flow duration, and Δ𝐻 

represents entropy fluctuation. Coefficients 𝛼, 𝛽, and 𝛾 are tunable parameters set based on the 

operational sensitivity and resource availability of RSUs. When the computed 𝐷 exceeds a 

predetermined threshold 𝑇𝐷, the flow is flagged as potentially malicious and passed on to the 

detection engine for deeper analysis. This metric ensures that only suspicious traffic is subjected 

to further resource-intensive ML classification, thus optimizing processing time and reducing 

false alarms. 
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LSTM-Based Detection at RSU Level 

Long Short-Term Memory (LSTM) networks are a variant of Recurrent Neural Network (RNN) 

that are especially well suited to model sequential or time-series data[6]. LSTM is utilized at the 

RSU level in the proposed system to process the extracted sequences of traffic features and label 

each flow as normal or anomalous[42]. The LSTM’s architecture allows it to retain information 

over extended time intervals, making it highly effective in identifying slowly evolving DDoS 

patterns that evade static rule-based detection systems. 

The model architecture consists of input layers fed by preprocessed traffic sequence, one or 

multiple hidden LSTM layers performing non-linear transformations with memory retention 

through forget and update gates, and a concluding dense layer with a softmax or sigmoid 

activation function to provide binary classification probabilities. The main strength of utilizing 

LSTM in comparison to other simpler classifiers like Decision Trees or Support Vector 

Machines is that it can detect complicated, time-prolonged patterns that could emerge over the 

course of several seconds or minutes.In order to save RSU processing power, the LSTM model is 

made lightweight both in terms of parameters and memory usage. Overfitting and resource 

loading are reduced by using techniques like dropout, batch normalization, and 

quantization.Once deployed, it operates in real-time to detect threats with minimal latency. 

Mitigation Strategy and Edge Response 

Upon detecting a malicious flow, the RSU initiates local mitigation measures to prevent the 

spread and impact of the DDoS attack[20]. These measures are executed immediately to ensure 

network continuity and minimize disruption to legitimate traffic[22]. Several mitigation 

strategies are employed, depending on the severity and classification confidence of the detected 

threat. The simplest action involves packet dropping, where suspicious packets are silently 

discarded before they consume computational resources. In more aggressive scenarios, the RSU 

may rate-limit or block the offending source address altogether. 

Blacklisting is another approach, where source IPs or MAC addresses linked to high attack 

degrees are temporarily isolated from the communication network[42]. These blacklists are 

maintained locally at the RSU level and periodically synchronized with the SDN controller to 
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ensure consistency. To avoid collateral damage, all mitigation actions are logged and validated 

against anomaly scores, and temporary bans are reversed if the threat subsides[39]. 

Cloud Aggregation and Global Model Dissemination 

To improve the accuracy and adaptability of the LSTM detection model over time, RSUs 

participate in a Federated Learning (FL) cycle managed by the cloud or control layer. Unlike 

centralized learning, where all raw data is uploaded to a server, FL allows each RSU to locally 

train its model on real-time traffic and only send encrypted weight updates to the cloud. The 

cloud aggregates these model updates using Federated Averaging: 

𝑤𝑔𝑙𝑜𝑏𝑎𝑙
(𝑡+1)

=
1

𝐾
∑𝑛𝑘

𝐾

𝑘=1

𝑤𝑘
(𝑡)

 

where 𝑤𝑘
(𝑡)

 represents the local model parameters from RSU 𝑘, and 𝑛𝑘 is the number of samples 

used by that RSU. The cloud computes the weighted average of all models and redistributes the 

improved global model back to all participating RSUs. This federated learning cycle ensures that 

detection models evolve with traffic patterns without violating data privacy or incurring 

excessive communication overhead. The periodic updates help in capturing new forms of attacks, 
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adapting to local traffic diversity, and maintaining detection accuracy across geographical zones. 

Workflow and End-to-End Operation 

The entire framework operates in a cyclical manner to ensure continuous protection and learning. 

When a vehicle enters an RSU’s range and begins communication, the RSU captures its traffic 

data in real time. This data undergoes preprocessing and attack degree evaluation. If the traffic’s 

behavior crosses predefined suspicion thresholds, it is passed to the LSTM model. The model 

then classifies the flow and triggers mitigation actions if necessary. In parallel, the RSU logs 

statistics and updates the local model using recent feedback. After a defined number of learning 

cycles, the RSU encrypts its local model weights and sends them to the cloud. The cloud 

performs global aggregation and broadcasts the updated model. This updated model is lighter 

and more accurate, reflecting a global understanding of both local and wide-area threat 

dynamics. This end-to-end process—from local detection to global learning—ensures that each 

RSU functions autonomously while contributing to a unified security posture. The system as a 

whole can detect novel attack patterns, coordinate responses, and evolve its detection capabilities 

without ever centralizing sensitive vehicular data. Figure 4.2 below presents the sequence 

diagram representing the workflow of the proposed model in the Vehicular Edge Computing 

(VEC) environment. 

 

Sequence diagram of the proposed model workflow in VEC. 
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Results and Performance Analysis 

This chapter features a meticulous investigation into the simulation results generated by our 

Federated Learning-focused Long Short-Term Memory (LSTM) framework, intended for the 

detection of Distributed Denial of Service (DDoS) attacks in the realm of Vehicular Edge 

Computing (VEC) environments. The efficacy of our system is assessed through a variety of 

evaluation metrics, including but not limited to accuracy, detection rate, failure rate, latency, and 

throughput; furthermore, supplementary visual representations such as the confusion matrix, 

temporal delay plots, temporal throughput plots, and model training curves (encompassing 

accuracy and loss) are included to enhance the substantiation of our system’s performance and 

resilience. A comparative analysis with existing methods is also provided to highlight the 

advancements achieved by the proposed framework. 

Performance Metrics 

The evaluation of any intelligent detection system, particularly in VEC environments, must focus 

on both classification accuracy and system responsiveness. The metrics chosen for this 

evaluation reflect the trade-off between real-time performance and detection reliability. 

Detection Rate (Recall) 

Detection Rate or Recall is a fundamental metric used to assess the proportion of actual 

malicious events correctly identified by the system. High recall is critical in vehicular 

environments because undetected malicious traffic can result in significant damage to the 

network and user safety. It is mathematically defined as: 

Detection Rate (Recall) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where 𝑇𝑃 is the number of true positives and 𝐹𝑁 is the number of false negatives. 

Failure Rate 

Failure Rate indicates the system’s inability to detect malicious behavior, calculated as: 
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Failure Rate =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

A lower failure rate implies a more dependable detection mechanism, especially under varying 

network load and mobility patterns. 

Throughput 

Throughput refers to the rate at which packets are processed by the system. In vehicular 

networks, high throughput ensures that the detection system keeps up with fast-moving data 

streams without causing backlogs. It is defined as: 

Throughput =
Total Packets Processed

Time Interval
 

Average Delay 

Delay measures the time taken to process and classify packets. In DDoS detection for VEC, 

minimal delay is essential for real-time reaction and mitigation. It is computed by: 

Average Delay =
∑ 𝐷𝑖
𝑛
𝑖=1

𝑛
 

where 𝐷𝑖 is the individual delay for the 𝑖th packet and 𝑛 is the total number of packets. 

Simulation Setup 

The simulation was conducted using Python, leveraging various machine learning and deep 

learning libraries such as Scikit-learn (Sklearn), TensorFlow, NumPy, and Pandas. These 

libraries facilitated tasks including data preprocessing, model construction, training, evaluation, 

and visualization. Hardware Configuration: 

• Processor: 12th Gen Intel(R) Core(TM) i7-1255U @ 1.70GHz 

• RAM: 16 GB 

• OS: Windows/Linux (compatible) 
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Dataset Overview: 

The CICDDoS2019 dataset is designed and maintained by the Canadian Institute for 

Cybersecurity (CIC) in order to create a comprehensive benchmark for evaluating intrusion 

detection systems for Distributed Denial of Service (DDoS) attacks[43]. The dataset attempts to 

replicate the real-world network traffic environment while providing both benign and malicious 

traffic flows to facilitate real-world testing and evaluation of detection mechanisms[43]. The B-

Profile [43] creates benign traffic with traffic patterns representing human behavior and 

generates background realistic traffic behaviors across protocols (HTTP, HTTPS, FTP, SSH, and 

email). Malicious traffic is produced by executing various scripts of DDoS attacks that target a 

server creating a realistic emulation of attack scenarios[43]. The dataset we studied comprised 

numerous DDoS attack types including categories of reflection based (DNS amplification, NTP 

amplification, SNMP reflection, SSDP reflection) and exploitation (TCP SYN flood, UDP flood, 

HTTP flood) classes, with a total of 12 DDoS attack types captured in multiple time intervals for 

more accurate labeling and in-depth analysis[44]. CICDDoS2019 is offered in two primary 

formats: PCAP files and CSV files. The PCAP files are raw network traffic captures, providing 

packet-level visibility for researchers that need deep traffic inspection or custom feature 

engineering. The CSV files, however, are produced using CICFlowMeter-V3, which transforms 

the raw PCAPs into flow-based records. Each record holds more than 80 statistical attributes 

such as flow duration, total forward and backward packets, packet length statistics, inter-arrival 

times, idle and active durations, protocol types, header lengths, flag counts, and throughput 

measures[44]. These attributes are annotated with respective timestamps and attack labels, which 

are very suitable for supervised machine learning and deep learning methods in intrusion 

detection[44]. CICDDoS2019 provides a realistic and varied dataset in the context of Vehicular 

Edge Computing (VEC) that can be used to train and validate detection models with realism and 

diversity[44]. The power of CICDDoS2019 to simulate dynamic traffic conditions provides a 

foundation for developing adaptive and real-time DDoS mitigation strategies to increase the 

security and reliability of VEC infrastructures[44]. 

Model Accuracy and Detection Effectiveness 

The confusion matrix in figure 5.1 summarizes the classification performance of the trained 

LSTM model. Out of the 400 actual malicious samples, 373 were correctly classified as 
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malicious, and 27 were misclassified as normal. Similarly, out of 600 actual normal samples, 547 

were correctly identified, and 53 were incorrectly flagged as malicious. This results in an overall 

accuracy of 92.0%, a detection rate of 93.2%, and a failure rate of 6.8%. 

 

Confusion matrix 

The high detection rate indicates that the model is highly effective at identifying malicious flows, 

a critical requirement for early DDoS mitigation. The low failure rate reflects the system’s ability 

to minimize false negatives, ensuring that most attack traffic is appropriately flagged and acted 

upon. 

Model Convergence and Training Behavior 

The model was trained over 30 epochs.In figure 5.2 depict the training and validation curves for 

accuracy and loss, respectively. The training accuracy starts around 0.5 and steadily climbs to 

over 0.88, while validation accuracy reaches beyond 0.92 by the final epoch. This demonstrates 

that the model effectively generalizes to unseen data. 
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Graph of Model accuracy and Model loss 

The training and validation loss curves show consistent decline, indicating the model is learning 

relevant features without overfitting. The final training and validation losses converge around 

0.28, further supporting the claim of good generalization. 

These results confirm the LSTM model’s suitability for sequential traffic classification and 

validate its deployment at resource-constrained RSUs. 

Delay Analysis 

For an assessment of how responsive the system is, over time, delay was plotted in figure 5.3. 

Delay, measured in milliseconds (ms), varies between 14 ms and 26 ms with an average of 

around 20 ms. Delay consistency for every time sample (1 to 1000) reveals that the RSU’s light 

LSTM model processes traffic nearly in real time. 

 

Delay analysis graph 
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Minimal delay is crucial in vehicular environments where decisions related to traffic routing, 

collision alerts, or hazard notifications must be made instantaneously. The graph proves that the 

model maintains operational performance under sustained traffic load, making it feasible for 

deployment in real-world VEC systems. 

Throughput Analysis 

The throughput graph in figure 5.4 shows how many packets were processed per second over the 

1000 simulation steps. The throughput ranges from approximately 4700 to 5300 packets/sec, 

indicating high and stable packet handling capacity. 

 

Throughput graph 

A stable throughput under high traffic load is critical in ensuring uninterrupted service in 

intelligent transport systems. This analysis further affirms that our proposed detection 

mechanism does not create processing bottlenecks at RSU level. 

Summary of Evaluation Metrics 

Based on the simulation results, the proposed model achieves: 

• Accuracy: 92.0 

• Detection Rate (Recall): 93.2 

• Failure Rate: 6.8 
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The system demonstrates high classification precision and recall, with low computational delay 

and robust throughput. The combination of these metrics indicates that the framework is 

effective for real-time DDoS detection and mitigation in VEC. 

Scalability Testing with Number of Vehicles 

To analyze performance under increased network load, the number of vehicles was varied from 

20 to 200. The corresponding detection rate (recall) was recorded. As shown in Figure 5.5, the 

detection rate remained consistently high, decreasing gradually from about 94% to 85%. This 

demonstrates that the system maintains strong detection capability even as vehicular density rises 

thanks to local inference at RSUs and Federated Learning, which reduces centralized 

bottlenecks. 

 

Detection Rate vs Number of Vehicles 

The slight performance drop reflects typical data congestion and model complexity in high-

density scenarios, but the overall stability confirms the scalability and robustness of the proposed 

approach. 

Result Analysis  

To validate the superiority of the proposed approach, a comparative analysis is performed against 

the DoSRT (Denial-of-Service Resistant Trust) model presented by Keshari et al. (2023)[32]. 

The DoSRT model evaluates trust levels of vehicles based on communication behavior, using 

both direct and indirect trust mechanisms[32]. 
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Under a 30–40% malicious node load: 

• DoSRT achieves approximately 85.33% accuracy and 89.71% detection rate. 

• Our proposed LSTM+FL framework achieves 92.0% accuracy and 93.2% detection rate. 

Unlike DoSRT’s static trust evaluation, our approach dynamically learns from traffic patterns. It 

adapts over time through Federated Learning without compromising user privacy. Moreover, 

DoSRT’s centralized computation adds latency, whereas our distributed architecture enables 

early detection and local mitigation[32]. This performance gap becomes especially relevant in 

high-mobility VEC environments where attacks evolve rapidly and need decentralized, 

intelligent countermeasures.A detailed comparative analysis of the proposed model and the 

DoSRT model is shown in Table 5.1 below. 

Comparative Analysis Table of our proposed model with DoSRT model 

Feature Proposed Model Keshari et al[32] 

Detection Accuracy 92.0% 85.33% 

Detection Rate 93.2% 89.71% 

Failure Rate 6.8% Not specified 

Model Type LSTM with Federated Learning Trust-based model 

Scalability High Moderate 

Privacy Preservation Yes Limited 

Adaptability to New Attacks High Limited 

 

Detection rate comparison between the proposed federated LSTM model and the DoSRT model 
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As shown in Figure 5.6, the proposed federated learning-based LSTM model has a considerably 

higher detection rate than the DoSRT model proposed by Keshari et al. [32] . The detection rate 

is approximately 93.2% for the proposed model and 89.71% for the DoSRT model, which is 

significantly lower than the proposed model’s detection rate. This performance improvement 

demonstrates the benefits of the hierarchical federated architecture, as well as the use of a 

lightweight LSTM classifier that can adjust to different VEIC environments. The detection 

performance in hierarchical federated architecture is higher than the recycling neighborhood 

concept employed by Keshari et al. [32] because the proposed model has the ability to learn 

temporal traffic patterns, while also sustaining data locality and scalability. 

 

Detection accuracy comparison between the proposed federated LSTM model and the DoSRT 

model 

The proposed federated learning-based LSTM model achieves detection accuracy of about 92% 

compared to the DoSRT model by Keshari, et al.[32] introduced in achieving detection accuracy 

about 85.33%, as shown in Figure 5.7. The suggested federated learning approach may have 

better accuracy due to the advantages of distributed training at the tiered, heterogeneous system 

(vehicle, edge, and cloud)- allowing for generalization across varying vehicular traffic examples. 

The LSTM allowed for the modeling of temporal features, landing further classification ability 

and providing a better fit for the dynamic and how scalable vehicular edge computing (VEC) 

environment. 
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Discussion 

The results clearly indicate that the proposed model is a viable and scalable solution for real-time 

DDoS detection in VEC. The use of Federated Learning ensures data privacy and model 

adaptability across different RSUs. The LSTM classifier efficiently handles time-sequenced 

traffic, making it suitable for resource-constrained edge nodes. 

The delay and throughput metrics demonstrate that the model does not introduce performance 

bottlenecks, maintaining responsiveness under heavy traffic. The accuracy and recall rates 

validate the model’s ability to reliably distinguish between normal and malicious traffic. 

Additionally, the comparative analysis with DoSRT illustrates that the proposed model not only 

improves detection capability but also reduces the dependency on central control units. This 

reduces overhead and enhances fault tolerance. 

Although real-time implementation on simulators like NS-3 remains a future goal due to current 

integration complexities, the foundational simulation proves that the architecture can function 

under real-world vehicular conditions. Overall, the system’s elevated precision, minimal latency, 

and capacity for adaptation indicate that it has the potential to function as a fundamental 

framework for intelligent and secure vehicular edge infrastructures. 

Conclusion and Future Work 

In this thesis, we proposed a scalable, decentralized, and privacy-preserving framework for 

detecting Distributed Denial of Service (DDoS) attacks in Vehicular Edge Computing (VEC) 

environments. Leveraging a hierarchical architecture that integrates edge-level LSTM-based 

classification and cloud-level Federated Learning, the proposed system effectively addresses the 

limitations of existing centralized intrusion detection approaches[36]. 

The LSTM model deployed at Road Side Units (RSUs) enables real-time traffic classification 

with minimal latency, while the Federated Learning mechanism allows collaborative model 

improvement without sharing sensitive raw data. An innovative attack degree metric is used for 

early filtering of potentially malicious traffic, reducing the computational burden on RSUs and 
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allowing for faster threat mitigation. The framework ensures high detection accuracy and low 

false negative rates, critical requirements in safety-sensitive vehicular networks[36]. 

The simulation, conducted on a system with a 12th Gen Intel Core i7 processor and 16 GB 

RAM, used a synthetic dataset with 1000 samples, of which 400 were labeled as malicious. The 

proposed model achieved a detection accuracy of 92.0%, a recall of 93.2%, and a failure rate of 

only 6.8%. The confusion matrix analysis, delay and throughput metrics, and model training 

convergence plots demonstrated the model’s responsiveness and reliability. Furthermore, when 

compared to the DoSRT model from recent literature, our approach showed significant 

improvements in detection metrics while maintaining system scalability[36]. 

Key contributions of this thesis include: 

• A novel LSTM-based DDoS detection mechanism suitable for RSUs in VEC systems. 

• A Federated Learning approach that enables collaborative model refinement without 

central data aggregation. 

• An attack degree heuristic that aids in prioritizing suspicious traffic before classification. 

• A comprehensive performance analysis validating detection accuracy, latency, and 

throughput. 

The findings indicate that the proposed framework can operate effectively in dynamic vehicular 

networks, offering a balance between security, performance, and scalability. 

Future Work 

While the proposed model provides a solid foundation for DDoS detection in VEC, several areas 

offer opportunities for future enhancement and exploration: 

Real-Time Simulation 

Due to time and integration constraints, the current implementation was limited to a Python-

based synthetic simulation. Future work will focus on implementing the framework in real-time 

network simulators such as NS-3 or OMNeT++, possibly integrated with mobility models from 
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SUMO. This will allow evaluation under more realistic traffic and mobility patterns, capturing 

variations in vehicle density, speed, and network latency. 

Multi-Class Classification and Adaptive Learning 

The current model operates on a binary classification scheme (normal vs. malicious). Extending 

the model to detect various types of attacks such as SYN flooding, UDP flooding, or spoofing 

attacks could increase its applicability. Incorporating adaptive learning mechanisms to update 

models based on evolving attack behaviors would further enhance resilience. 

Hybrid Approaches 

Future iterations could explore combining Federated Learning with techniques like Transfer 

Learning or Blockchain to further secure the federated update process and share knowledge 

across heterogeneous domains. Additionally, ensemble methods combining LSTM with other 

classifiers like CNNs or decision trees may improve robustness. 

Resource Optimization and Energy Efficiency 

Given the resource-constrained nature of RSUs and OBUs, optimizing the LSTM model for 

reduced energy consumption and memory footprint remains an important research direction. 

Techniques such as model pruning, quantization, and hardware acceleration using edge AI chips 

could be explored. 

Final Remarks 

The thesis demonstrates that a federated, learning-enabled, real-time detection system can 

significantly enhance the robustness of vehicular edge networks against DDoS attacks. By 

embracing distributed intelligence and leveraging lightweight models, the framework aligns well 

with the evolving architecture of intelligent transportation systems. The results obtained affirm 

the feasibility of deploying such solutions in real-world VEC deployments, thereby contributing 

to safer and more resilient smart mobility infrastructures. 
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